Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Spine Surg Relat Res ; 8(2): 133-142, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38618214

RESUMEN

Postoperative epidural fibrosis (EF) is still a major limitation to the success of spine surgery. Fibrotic adhesions in the epidural space, initiated via local trauma and inflammation, can induce difficult-to-treat pain and constitute the main cause of failed back surgery syndrome, which not uncommonly requires operative revision. Manifold agents and methods have been tested for EF relief in order to mitigate this longstanding health burden and its socioeconomic consequences. Although several promising strategies could be identified, few have thus far overcome the high translational hurdle, and there has been little change in standard clinical practice. Nonetheless, notable research progress in the field has put new exciting avenues on the horizon. In this review, we outline the etiology and pathogenesis of EF, portray its clinical and surgical presentation, and critically appraise current efforts and novel approaches toward enhanced prevention and treatment.

2.
Clin Immunol ; 262: 110174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462155

RESUMEN

Chronic rhinosinusitis (CRS) is a persistent nasal and paranasal sinus mucosa inflammation comprising two phenotypes, namely CRS with nasal polyps (CRSwNP) and without (CRSsNP). CRSwNP can be associated with asthma and hypersensitivity to non-steroidal anti-inflammatory drug (NSAID) in a syndrome known as NSAID-exacerbated respiratory disease (N-ERD). Furthermore, CRS frequently intertwines with respiratory allergies. This study investigated levels of 33 different nasal and serum cytokines and phenotypic characteristics of peripheral blood mononuclear cells (PBMCs) within cohorts of CRS patients (n = 24), additionally examining the influence of comorbid respiratory allergies by mass cytometry. N-ERD patients showed heightened type 2 nasal cytokine levels. Mass cytometry revealed increased activated naive B cell levels in CRSwNP and N-ERD, while resting naive B cells were higher in CRSsNP. Th2a cell levels were significantly elevated in allergic subjects, but not in CRS groups. In conclusion, there are distinct immunological features in PBMCs of CRS phenotypes and allergy.


Asunto(s)
Hipersensibilidad , Pólipos Nasales , Rinitis , Rinosinusitis , Sinusitis , Humanos , Leucocitos Mononucleares , Enfermedad Crónica , Citocinas
3.
Cell Rep ; 43(1): 113640, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38180839

RESUMEN

Adhesion G-protein-coupled receptors (aGPCRs) form a large family of cell surface molecules with versatile tasks in organ development. Many aGPCRs still await their functional and pharmacological deorphanization. Here, we characterized the orphan aGPCR CG11318/mayo of Drosophila melanogaster and found it expressed in specific regions of the gastrointestinal canal and anal plates, epithelial specializations that control ion homeostasis. Genetic removal of mayo results in tachycardia, which is caused by hyperkalemia of the larval hemolymph. The hyperkalemic effect can be mimicked by a raise in ambient potassium concentration, while normal potassium levels in mayoKO mutants can be restored by pharmacological inhibition of potassium channels. Intriguingly, hyperkalemia and tachycardia are caused non-cell autonomously through mayo-dependent control of enterocyte proliferation in the larval midgut, which is the primary function of this aGPCR. These findings characterize the ancestral aGPCR Mayo as a homeostatic regulator of gut development.


Asunto(s)
Drosophila , Hiperpotasemia , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Larva/metabolismo , Potasio/metabolismo , Taquicardia , Adhesión Celular
4.
Plant Physiol ; 194(3): 1336-1357, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37930810

RESUMEN

Plants must rapidly and dynamically adapt to changes in their environment. Upon sensing environmental signals, plants convert them into cellular signals, which elicit physiological or developmental changes that allow them to respond to various abiotic and biotic cues. Because plants can be simultaneously exposed to multiple environmental cues, signal integration between plant cells, tissues, and organs is necessary to induce specific responses. Recently, CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides and their cognate CLAVATA-type receptors received increased attention for their roles in plant-environment interactions. CLE peptides are mobile signaling molecules, many of which are induced by a variety of biotic and abiotic stimuli. Secreted CLE peptides are perceived by receptor complexes on the surface of their target cells, which often include the leucine-rich repeat receptor-like kinase CLAVATA1. Receptor activation then results in cell-type and/or environment-specific responses. This review summarizes our current understanding of the diverse roles of environment-regulated CLE peptides in modulating plant responses to environmental cues. We highlight how CLE signals regulate plant physiology by fine-tuning plant-microbe interactions, nutrient homeostasis, and carbon allocation. Finally, we describe the role of CLAVATA receptors in the perception of environment-induced CLE signals and discuss how diverse CLE-CLAVATA signaling modules may integrate environmental signals with plant physiology and development.


Asunto(s)
Interacción Gen-Ambiente , Transducción de Señal , Transporte Biológico , Carbono , Péptidos
5.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38106087

RESUMEN

Two symbiotic processes, nodulation and arbuscular mycorrhiza, are primarily controlled by the plant's need for nitrogen (N) and phosphorus (P), respectively. Autoregulation of Nodulation (AON) and Autoregulation of Mycorrhization (AOM) share multiple components - plants that make too many nodules usually have higher arbuscule density. The protein TML (TOO MUCH LOVE) was shown to function in roots to maintain susceptibly to rhizobial infection under low N conditions and control nodule number through AON in Lotus japonicus. M. truncatula has two sequence homologs: MtTML1 and MtTML2. We report the generation of stable single and double mutants harboring multiple allelic variations in MtTML1 and MtTML2 using CRISPR-Cas9 targeted mutagenesis and screening of a transposon mutagenesis library. Plants containing single mutations in either gene produced twice the nodules of wild type plants whereas plants containing mutations in both genes displayed a synergistic effect, forming 20x more nodules and short roots compared to wild type plants. The synergistic effect on nodulation was maintained in the presence of 10mM nitrogen, but not observed in root length phenotypes. Examination of expression and heterozygote effects suggest genetic compensation may play a role in the observed synergy. However, plants with mutations in both TMLs had no detectable change in arbuscular mycorrhizal associations, suggesting that MtTMLs are specific to nodulation and nitrate signaling. The mutants created will be useful tools to dissect the mechanism of synergistic action of MtTML1 and MtTML2 in M. truncatula nodulation as well as the separation of AON from AOM.

6.
Glob Chang Biol ; 29(18): 5276-5291, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37427494

RESUMEN

Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. On a 10-year geothermal warming gradient in Iceland, we studied the effects of soil warming and N addition on CO2 fluxes and the fate of recently photosynthesized C through CO2 flux measurements and a 13 CO2 pulse-labeling experiment. Under warming, ecosystem respiration exceeded maximum gross primary productivity, causing increased net CO2 emissions. N addition treatments revealed that, surprisingly, the plants in the warmed soil were N limited, which constrained primary productivity and decreased recently assimilated C in shoots and roots. In soil, microbes were increasingly C limited under warming and increased microbial uptake of recent C. Soil respiration was increased by warming and was fueled by increased belowground inputs and turnover of recently photosynthesized C. Our findings suggest that a decade of warming seemed to have induced a N limitation in plants and a C limitation by soil microbes. This caused a decrease in net ecosystem CO2 uptake and accelerated the respiratory release of photosynthesized C, which decreased the C sequestration potential of the grassland. Our study highlights the importance of belowground C allocation and C-N interactions in the C dynamics of subarctic ecosystems in a warmer world.


Asunto(s)
Carbono , Ecosistema , Pradera , Dióxido de Carbono , Nitrógeno , Plantas , Suelo
7.
Ann Rheum Dis ; 82(9): 1142-1152, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37344156

RESUMEN

INTRODUCTION: Structural reorganisation of the synovium with expansion of fibroblast-like synoviocytes (FLS) and influx of immune cells is a hallmark of rheumatoid arthritis (RA). Activated FLS are increasingly recognised as a critical component driving synovial tissue remodelling by interacting with immune cells resulting in distinct synovial pathotypes of RA. METHODS: Automated high-content fluorescence microscopy of co-cultured cytokine-activated FLS and autologous peripheral CD4+ T cells from patients with RA was established to quantify cell-cell interactions. Phenotypic profiling of cytokine-treated FLS and co-cultured T cells was done by flow cytometry and RNA-Seq, which were integrated with publicly available transcriptomic data from patients with different histological synovial pathotypes. Computational prediction and knock-down experiments were performed in FLS to identify adhesion molecules for cell-cell interaction. RESULTS: Cytokine stimulation, especially with TNF-α, led to enhanced FLS-T cell interaction resulting in cell-cell contact-dependent activation, proliferation and differentiation of T cells. Signatures of cytokine-activated FLS were significantly enriched in RA synovial tissues defined as lymphoid-rich or leucocyte-rich pathotypes, with the most prominent effects for TNF-α. FLS cytokine signatures correlated with the number of infiltrating CD4+ T cells in synovial tissue of patients with RA. Ligand-receptor pair interaction analysis identified ICAM1 on FLS as an important mediator in TNF-mediated FLS-T cell interaction. Both, ICAM1 and its receptors were overexpressed in TNF-treated FLS and co-cultured T cells. Knock-down of ICAM1 in FLS resulted in reduced TNF-mediated FLS-T cell interaction. CONCLUSION: Our study highlights the role of cytokine-activated FLS in orchestrating inflammation-associated synovial pathotypes providing novel insights into disease mechanisms of RA.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Humanos , Citocinas , Factor de Necrosis Tumoral alfa/farmacología , Membrana Sinovial/patología , Sinoviocitos/patología , Fibroblastos/patología , Células Cultivadas
8.
Proc Natl Acad Sci U S A ; 120(23): e2215195120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253004

RESUMEN

The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Receptores de Superficie Celular/metabolismo , Etilenos/metabolismo , Transducción de Señal/fisiología
10.
J Cancer Res Clin Oncol ; 149(8): 4293-4303, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36068443

RESUMEN

PURPOSE: Endometrial cancer is the most common gynecological malignancy. The helicase RIG-I, a part of the innate immune system, and EFTUD2, a splicing factor which can upregulate RIG-I expression, are shown to influence tumor growth and disease progression in several malignancies. For endometrial cancer, an immunogenic cancer, data about RIG-I and EFTUD2 are still missing. The aim of this study was to examine the expression of RIG-I and EFTUD2 in endometrial cancer. METHODS: 225 specimen of endometrial cancer were immunohistochemically stained for RIG-I and EFTUD2. The results were correlated to clinicopathological data, overall survival (OS) and progression-free survival (PFS). RESULTS: High RIG-I expression correlated with advanced tumor stages (FIGO: p = 0.027; pT: p = 0.010) and worse survival rates (OS: p = 0.009; PFS: p = 0.022). High EFTUD2 expression correlated to worse survival rates (OS: p = 0.026; PFS: p < 0.001) and was determined to be an independent marker for progression-free survival. CONCLUSION: Our data suggest that the expression of RIG-I and EFTUD2 correlates with survival data, which makes both a possible therapeutic target in the future.


Asunto(s)
Neoplasias Endometriales , Femenino , Humanos , Estadificación de Neoplasias , Neoplasias Endometriales/patología , Pronóstico , Factores de Elongación de Péptidos , Ribonucleoproteína Nuclear Pequeña U5
11.
Front Immunol ; 13: 1004583, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578479

RESUMEN

Mass cytometry (MC) is a powerful method for mapping complex cellular systems at single-cell levels, based on the detection of cellular proteins. Numerous studies have been performed using human blood, but there is a lack of protocols describing the processing and labeling of bronchoalveolar lavage fluid (BALF) and nasal polyps (NP) for acquisition by MC. These specimens are essential in the investigation of immune cell characteristics in airway diseases such as asthma and chronic rhinosinusitis with NP (CRSwNP). Here we optimized a workflow for processing, labeling, and acquisition of BALF and NP cells by MC. Among three methods tested for NP digestion, combined enzymatic/mechanical processing yielded maximum cell recovery, viability and labeling patterns compared to the other methods. Treatment with DNAse improved sample acquisition by MC. In a final step, we performed a comparison of blood, BALF and NP cell composition using a 31-marker MC antibody panel, revealing expected differences between the different tissue but also heterogeneity among the BALF and NP samples. We here introduce an optimized workflow for the MC analysis of human NP and BALF, which enables comparative analysis of different samples in larger cohorts. A deeper understanding of immune cell characteristics in these samples may guide future researchers and clinicians to a better disease management.


Asunto(s)
Asma , Pólipos Nasales , Sinusitis , Humanos , Asma/diagnóstico
12.
Dent Mater ; 38(12): 2014-2029, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36424205

RESUMEN

Calcium phosphate (CaP) deposition during bone mineralization starts with the aggregation of Posner's clusters Ca9(PO4)6 into amorphous Ca-phosphate (ACP), which then transforms into crystalline CaP and finally maturates to hydroxyapatite (HA). Using dentin/enamel of human teeth as a model system, we show that the physiological inorganic polymer polyphosphate (polyP), a phosphate donor in mineralization, prevents the transition from amorphous to crystalline CaP at concentrations> 15 wt%. Stabilization of the amorphous phase of CaP by polyP is reversed by hydrolysis of the polymer by alkaline phosphatase (ALP), an enzyme that releases phosphate for mineralization. It is still present in calcified enamel and dentin, as shown here by immunostaining and enzyme activity measurements. The phase transfer into crystalline CaP can be prevented by the ALP inhibitor levamisole. Besides TEM and SEM, the modulating effects of polyP and ALP on the kinetics of the phase transition from amorphous to crystalline CaP are demonstrated and confirmed by XRD and FTIR analyses. Molecular modeling studies show that the polyP chains, due to their dimensions, are able to penetrate into the channels between the Posner molecules, preventing cluster association to ACP and impairing HA crystal formation.


Asunto(s)
Fosfatos de Calcio , Polifosfatos , Humanos , Durapatita , Fosfatasa Alcalina , Polímeros , Colorantes
13.
Biophys J ; 121(20): 3862-3873, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36086818

RESUMEN

Herein, we present, to our knowledge, the first spectroscopic characterization of the Cu(I) active site of the plant ethylene receptor ETR1. The x-ray absorption (XAS) and extended x-ray absorption fine structure (EXAFS) spectroscopies presented here establish that ETR1 has a low-coordinate Cu(I) site. The EXAFS resolves a mixed first coordination sphere of N/O and S scatterers at distances consistent with potential histidine and cysteine residues. This finding agrees with the coordination of residues C65 and H69 to the Cu(I) site, which are critical for ethylene activity and well conserved. Furthermore, the Cu K-edge XAS and EXAFS of ETR1 exhibit spectroscopic changes upon addition of ethylene that are attributed to modifications in the Cu(I) coordination environment, suggestive of ethylene binding. Results from umbrella sampling simulations of the proposed ethylene binding helix of ETR1 at a mixed quantum mechanics/molecular mechanics level agree with the EXAFS fit distance changes upon ethylene binding, particularly in the increase of the distance between H69 and Cu(I), and yield binding energetics comparable with experimental dissociation constants. The observed changes in the copper coordination environment might be the triggering signal for the transmission of the ethylene response.


Asunto(s)
Cobre , Histidina , Sitios de Unión , Cobre/química , Cisteína/química , Etilenos , Espectroscopía de Absorción de Rayos X , Receptores de Superficie Celular
14.
J Cancer Res Clin Oncol ; 148(12): 3323-3335, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35729354

RESUMEN

PURPOSE: Endometrial cancer (EC) is the most common gynecological cancer worldwide. Treatment has been improved in recent years, but, in advanced stages, therapeutical options are still limited. It has been reported that the expression of the blood group antigens Sialyl Lewis X (SLeX), Sialyl Lewis A (SLeA) and Lewis Y (LeY) is associated with prognosis in several tumors. Large studies on endometrial and cervical cancer are still pending. METHODS: Specimens of 234 patients with EC were immunohistochemically stained with antibodies for SLeX, SLeA and LeY. Expression was correlated to histopathological variables. RESULTS: High expression of SLeX was correlated to low pT-stage (p = 0.013), low grade (p < 0.001), low FIGO-stage (p = 0.006) and better overall survival rates (OS; p = 0.023). High expression of SLeA was associated with low pT-stage (p = 0.013), low grade (p = 0.001) and better progression-free survival (PFS; p = 0.043). LeY staining was correlated to pN + (p = 0.038), low grade (p = 0.005) and poorer PFS (p = 0.022). CONCLUSION: This is the first study examining the expression of SLeX, SLeA and LeY in EC, which can serve as additional future prognostic markers. Further studies are necessary to understand the underlying mechanisms. The study was approved by the local ethics committee of the Ludwig-Maximilians University Munich (reference number 19-249).


Asunto(s)
Antígenos de Grupos Sanguíneos , Neoplasias Endometriales , Femenino , Humanos , Antígeno Sialil Lewis X , Antígeno CA-19-9 , Pronóstico
15.
Glob Chang Biol ; 28(17): 5086-5103, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35607942

RESUMEN

Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.


Asunto(s)
Sequías , Ecosistema , Ciclo del Carbono , Cambio Climático , Suelo
16.
RSC Adv ; 12(12): 7352-7356, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35424698

RESUMEN

The plant ethylene receptor ETR1 is a key player in the perception of the phytohormone and subsequent downstream ethylene signal transmission, crucial for processes such as ripening, senescence and abscission. However, to date, there is sparse structural knowledge about the transmembrane sensor domain (TMD) of ETR1 that is responsible for the binding of the plant hormone and initiates the downstream signal transmission. Sequence information and ab initio modelling suggest that the TMD consists of three transmembrane helices. Here, we combined site-directed spin labelling with electron paramagnetic resonance spectroscopy and obtained distance restraints for liposome-reconstituted ETR1_TMD on the orientation and arrangement of the transmembrane helices. We used these data to scrutinize different computational structure predictions of the TMD.

17.
Food Chem Toxicol ; 164: 113006, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35436549

RESUMEN

The present study focuses on the association between metabolic capacity and toxicity of the natural occurring flavonoid nevadensin in vitro. Human colon (HT29), liver (HepG2) and bone marrow (KG1) carcinoma cells were used and strong cell line dependent differences in toxic effect strength were found. HepG2 and KG1 cells were more sensitive against nevadensin treatment in comparison to HT29 cells. High resolution mass spectrometry experiments showed that nevadensin is rapidly glucuronidated in HT29 cells, whereas KG1 cells do not metabolize nevadensin, thus glucuronidation was supposed to be a crucial metabolic pathway in vitro. To proof this suggestion, nevadensin glucuronides were isolated from pig liver microsomes und structurally elucidated via NMR spectroscopy. In HepG2 cells a cellular enrichment of nevadensin itself as well as nevadensin-7-O-glucuronide was determined by tandem mass spectrometry. A proteomic screening of uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGT) in HT29 and HepG2 cells provided first hints that the isoforms UGT1A6 and UGT1A1 are responsible for nevadensin glucuronidation. Additionally, nevadensin was found to be a potent SULT inhibitor in HepG2 cells. In sum, the present study clearly illustrates the importance of obtaining detailed information about metabolic competence of cell lines which should be considered in the evaluation of toxic endpoints.


Asunto(s)
Flavonoides , Proteómica , Animales , Flavonas , Flavonoides/farmacología , Glucurónidos , Glucuronosiltransferasa/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Porcinos , Espectrometría de Masas en Tándem
18.
New Phytol ; 234(5): 1817-1831, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35274313

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis is accompanied by alterations to root cell metabolism and physiology, and to the pathways of orthophosphate (Pi) entry into the root, which increase with Pi delivery to cortical cells via arbuscules. How AM symbiosis influences the Pi content and Pi response dynamics of cells in the root cortex and epidermis is unknown. Using fluorescence resonance energy transfer (FRET)-based Pi biosensors, we mapped the relative cytosolic and plastidic Pi content of Brachypodium distachyon mycorrhizal root cells, analyzed responses to extracellular Pi and traced extraradical hyphae-mediated Pi transfer to colonized cells. Colonized cortical cells had a higher cytosolic Pi content relative to noncolonized cortical and epidermal cells, while plastidic Pi content was highest in cells at the infection front. Pi application to the entire mycorrhizal root resulted in transient changes in cytosolic Pi that differed in direction and magnitude depending on cell type and arbuscule status; cells with mature arbuscules showed a substantial transient increase in cytosolic Pi while those with collapsed arbuscules showed a decrease. Directed Pi application to extraradical hyphae resulted in measurable changes in cytosolic Pi of colonized cells 18 h after application. Our experiments reveal that cells within a mycorrhizal root vary in Pi content and Pi response dynamics.


Asunto(s)
Técnicas Biosensibles , Brachypodium , Micorrizas , Brachypodium/genética , Brachypodium/metabolismo , Regulación de la Expresión Génica de las Plantas , Micorrizas/fisiología , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Simbiosis/fisiología
19.
Trends Plant Sci ; 27(9): 870-889, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35246381

RESUMEN

Plants engage in mutually beneficial relationships with microbes, such as arbuscular mycorrhizal fungi or nitrogen-fixing rhizobia, for optimized nutrient acquisition. In return, the microbial symbionts receive photosynthetic carbon from the plant. Both symbioses are regulated by the plant nutrient status, indicating the existence of signaling pathways that allow the host to fine-tune its interactions with the beneficial microbes depending on its nutrient requirements. Peptide hormones coordinate a plethora of developmental and physiological processes and, recently, various peptide families have gained special attention as systemic and local regulators of plant-microbe interactions and nutrient homeostasis. In this review, we identify five 'rules' or guiding principles that govern peptide function during symbiotic plant-microbe interactions, and highlight possible points of integration with nutrient acquisition pathways.


Asunto(s)
Fabaceae , Micorrizas , Micorrizas/fisiología , Péptidos , Raíces de Plantas/microbiología , Plantas/microbiología , Simbiosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...